Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(2): e54924, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38544606

RESUMO

Retroperitoneal chyloma is a rare entity that presents with non-specific symptoms. Although benign, it can cause complications due to the mass effect. In this case report, we present the case of a 24-year-old woman who presented with a complaint of left-sided colicky abdominal pain and mild dysuria for one year. On physical examination, there was only mild abdominal tenderness. Computed tomography (CT) revealed a thick-walled cystic retroperitoneal mass with a small amount of fat in the superior part and a displaced left hydronephrotic kidney. Magnetic resonance imaging (MRI) confirmed the findings and also revealed a fat-fluid level in the cyst. A laparotomy was performed, and the cystic mass, containing milky fluid, was excised. Histopathology showed a pseudocyst with chronic inflammation and a xanthomatous reaction, with no evidence of infection or malignancy. The patient recovered without complications and has not had a recurrence so far. Retroperitoneal chyloma is difficult to diagnose preoperatively. A definitive diagnosis is usually made only after surgery and a histopathological examination. The treatment of choice is a complete excision. Other approaches, such as marsupialization or drainage, will likely result in a recurrence. However, surgery in the retroperitoneal space is associated with a risk of injury to major vessels or organs. In conclusion, retroperitoneal chyloma is a rare entity that is best treated by complete excision. For small lesions, a wait-and-watch approach may be advisable.

2.
Heliyon ; 10(3): e24909, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333811

RESUMO

Regeneration is a rare occurrence in the animal kingdom, but the earthworm stands out as a remarkable example of this phenomenon. Recent research has highlighted the promising wound healing properties of extracts derived from earthworms. Therefore, we propose that earthworm granulation tissue extract (EGTE) may facilitate wound healing by regulating immune responses in a rabbit diabetic wound model. Electron microscopy reveals that 70 % EGTE possesses noteworthy porosity with spherical to irregularly oval configuration. Gas chromatography-mass spectrometry (GC-MS) Characterization of EGTE revealed higher levels of ergosta-5,7,22-trien-3-ol, (3. beta.,22E). In-Vitro studies revealed significant anti-oxidant, anti-inflammatory and anti-bacterial properties in dose dependent manner. Likewise, cytotoxicity assessments reveal that 70 % EGTE exhibits minimal harm to cells while displaying substantial antioxidant and anti-inflammatory activities. For In-Vivo studies excision wounds were created on the dorsal regions of the experimental animals and were divided as Group I (50 % EGTE), Group II (70 % EGTE), Group III (vehicle) and Group IV (distilled water). Over a 21-day observation period 70 % EGTE facilitated the early healing of wounds in the experimental animals, evident through prompt wound closure, granulation tissue formation, increased DNA content, enhanced tensile strength of the wound area and enhanced the expression/synthesis of wound healing markers/proteins. From these results it can be postulated that EGTE accelerates wound healing by immune modulation, dampening of inflammatory pathway and enhanced expression of growth markers. Henceforth making it promising candidate for therapeutic use in diabetic wound healing.

3.
Int J Biol Macromol ; 256(Pt 2): 127490, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979758

RESUMO

Hepatic cancer is among the most recurrently detected malignancies worldwide and one of the main contributors to cancer-associated mortality. With few available therapeutic choices, there is an instant necessity to explore suitable options. In this aspect, Nanotechnology has been employed to explore prospective chemotherapeutic approaches, especially for cancer treatment. Nanotechnology is concerned with the biological and physical properties of nanoparticles in the therapeutic use of drugs. In the current work, formulation, and characterization of α-Fe2O3-Sodium Alginate-Eugenol nanocomposites (FSE NCs) using several approaches like SEM and TEM, UV-visible, FTIR, and PL spectroscopy, XRD, EDAX, and DLS studies have been performed. With an average size of 50 nm, the rhombohedral structure of NCs was identified. Further, their anticancer activity against Hep3B liver cancer cell lines has been performed by cell viability, dual staining, DCFH-DA, Annexin-V/-FITC/PI, cell cycle analysis methods, and PI3K/Akt/mTOR signaling proteins were studied to assess the anticancer effects of the NCs in Hep3B cells. Also, anti-cancer activity on animal modeling in-vivo using zebra fishes to hematological parameters, liver enzymes, and histopathology study effectiveness was noticed. Moreover, the NCs reduced the viability, elevated the ROS accumulation, diminished the membrane integrity, reduced the antioxidants, blocked the cell cycle, and triggered the PI3K/Akt/mTOR signaling axis that eventually resulted in cell death. As a result, FSE NCs possess huge potential for use as a possible anticancer candidate.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Compostos Férricos , Nanocompostos , Animais , Peixe-Zebra/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Eugenol/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Alginatos/farmacologia , Estudos Prospectivos , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Nanocompostos/química , Linhagem Celular Tumoral
4.
Plants (Basel) ; 12(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37765338

RESUMO

An aqueous extract of Syzygium cumini seeds was utilized to green synthesize titanium dioxide nanoparticles (TiO2 NPs). UV-Visible, DLS, FTIR, XRD, FESEM, TEM, SAED, EDAX, and photoluminescence spectroscopy techniques were employed to characterize the prepared TiO2 nanoparticles. The rutile crystal structure of TiO2 NPs was revealed by XRD study. The TEM and FESEM images of the TiO2 NPs revealed an average particle size of 50-100 nm. We employed EDAX to investigate the elemental compositions of TiO2 NPs. The O-Ti-O stretching bands appeared in the FTIR spectrum of TiO2 NPs at wavenumbers of 495 cm-1. The absorption edge peaks of TiO2 NPs were found in the UV-vis spectra at 397 nm. The MTT study revealed that TiO2 NPs effectively inhibited the growth of liver cancer Hep3 and Hep-G2 cells. The results of the corresponding fluorescent staining assays showed that TiO2 NPs significantly increased ROS generation, decreased MMP, and induced apoptosis in both liver cancer Hep3 and Hep-G2 cells. TiO2 nanoparticles lessened SOD, CAT, and GSH levels while augmenting MDA contents in Hep3 and Hep-G2 cells. In both Hep3 and Hep-G2 cells treated with TiO2 NPs, the Bax, CytC, p53, caspase-3, -8, and -9 expressions were remarkably augmented, while Bcl-2 expression was reduced. Overall, these findings revealed that formulated TiO2 NPs treatment considerably inhibited growth and triggered apoptosis in Hep3 and HepG2 cells.

5.
Int J Biol Macromol ; 244: 125054, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37245766

RESUMO

The present study investigated the cytotoxicity and proapoptotic properties of iron oxide-sodium-alginate-thymoquinone nanocomposites against breast cancer MDA-MB-231 cells in vitro and in silico. This study used chemical synthesis to formulate the nanocomposite. Electron microscopies such as scanning (SEM) and transmission (TEM), Fourier transform infrared (FT-IR), Ultraviolet-Visible, Photoluminescence spectroscopy, selected area (electron) diffraction (SAED), energy dispersive X-ray analysis (EDX), and X-ray diffraction studies (XRD) were used to characterize the synthesized ISAT-NCs and the average size of them was found to be 55 nm. To evaluate the cytotoxic, antiproliferative, and apoptotic potentials of ISAT-NCs on MDA-MB-231 cells, MTT assays, FACS-based cell cycle studies, annexin-V-PI staining, ELISA, and qRT-PCR were used. PI3K-Akt-mTOR receptors and thymoquinone were predicted using in-silico docking studies. Cell proliferation is reduced in MDA-MB-231 cells due to ISAT-NC cytotoxicity. As a result of FACS analysis, ISAT-NCs had nuclear damage, ROS production, and elevated annexin-V levels, which resulted in cell cycle arrest in the S phase. The ISAT-NCs in MDA-MB-231 cells were found to downregulate PI3K-Akt-mTOR regulatory pathways in the presence of inhibitors of PI3K-Akt-mTOR, showing that these regulatory pathways are involved in apoptotic cell death. We also predicted the molecular interaction between thymoquinone and PI3K-Akt-mTOR receptor proteins using in-silico docking studies which also support PI3K-Akt-mTOR signaling inhibition by ISAT-NCs in MDA-MB-231 cells. As a result of this study, we can conclude that ISAT-NCs inhibit the PI3K-Akt-mTOR pathway in breast cancer cell lines, causing apoptotic cell death.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Alginatos , Espectroscopia de Infravermelho com Transformada de Fourier , Células MCF-7 , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Proliferação de Células , Anexinas , Linhagem Celular Tumoral
6.
Plants (Basel) ; 12(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176818

RESUMO

Nanotechnology has emerged as the most popular research topic with revolutionary applications across all scientific disciplines. Tin oxide (SnO2) has been gaining considerable attention lately owing to its intriguing features, which can be enhanced by its synthesis in the nanoscale range. The establishment of a cost-efficient and ecologically friendly procedure for its production is the result of growing concerns about human well-being. The novelty and significance of this study lie in the fact that the synthesized SnO2 nanoparticles have been tailored to have specific properties, such as size and morphology. These properties are crucial for their applications. Moreover, this study provides insights into the synthesis process of SnO2 nanoparticles, which can be useful for developing efficient and cost-effective methods for large-scale production. In the current study, green Pluronic-coated SnO2 nanoparticles (NPs) utilizing the root extracts of Polygonum cuspidatum have been formulated and characterized by several methods such as UV-visible, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDAX), transmission electron microscope (TEM), field emission-scanning electron microscope (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS) studies. The crystallite size of SnO2 NPs was estimated to be 45 nm, and a tetragonal rutile-type crystalline structure was observed. FESEM analysis validated the NPs' spherical structure. The cytotoxic potential of the NPs against HepG2 cells was assessed using the in vitro MTT assay. The apoptotic efficiency of the NPs was evaluated using a dual-staining approach. The NPs revealed substantial cytotoxic effects against HepG2 cells but failed to exhibit cytotoxicity in different liver cell lines. Furthermore, dual staining and flow cytometry studies revealed higher apoptosis in NP-treated HepG2 cells. Nanoparticle treatment also inhibited the cell cycle at G0/G1 stage. It increased oxidative stress and promoted apoptosis by encouraging pro-apoptotic protein expression in HepG2 cells. NP treatment effectively blocked the PI3K/Akt/mTOR axis in HepG2 cells. Thus, green Pluronic-F-127-coated SnO2 NPs exhibits enormous efficiency to be utilized as an talented anticancer agent.

7.
Nanomaterials (Basel) ; 13(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37176983

RESUMO

In this study, we synthesized, characterized, and explored the anti-microbial and anti-cancer effects of albumin-chlorogenic acid nanoparticles (NPs). Characterization studies with a UV-vis spectrophotometer, FTIR, PL spectrum, TEM, FESEM, XRD, and DLA analysis showed patterns confirming the physio-chemical nature of biogenic nanocomposites. Further, anti-microbial studies using bacterial strains Staphylococcus aureus, Streptococcus pneumonia, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Vibrio cholera, and fungal strain Candida albicans showed significant (p < 0.05) anti-bacterial and anti-fungal activities. Next, we used MDA-MB-435s, a human cell line, to evaluate the anti-cancer effects of albumin-chlorogenic acid NPs. Cytotoxic studies revealed its IC50 concentration at 24 µg/mL after a 24 h treatment of MDA-MB-435s cells. We chose this IC50 dose to analyze albumin-chlorogenic acid NPs anti-cancer effects in vitro. MDA-MB-435s cells exposed to our NPs were studied via AO/EtBr staining, cell cycle analyses via PI staining, the status of whole genomic damage via comet assay, levels of apoptotic cells via annexin V/PI staining, ROS generation via DCFH-DA staining, an assay of antioxidant enzymes catalase, superoxide dismutase, and antioxidant GSH, via ELISA analyses of apoptotic markers caspase-3, 8, 9, Bax, Bcl-2, CytC, and p53, PI3/AKT/mTOR pathway. Our results collectively showed albumin-chlorogenic acid NPs induced apoptosis via p53-dependent and PI3/AKT/mTOR inhibition in MDA-MB-435s cells. Our results denote albumin-chlorogenic acid NPs can be used as an effective candidate for anti-microbial and anti-cancer applications; however, further in vivo confirmatory studies are warranted.

8.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049991

RESUMO

Breast cancer is among the most recurrent malignancies, and its prevalence is rising. With only a few treatment options available, there is an immediate need to search for better alternatives. In this regard, nanotechnology has been applied to develop potential chemotherapeutic techniques, particularly for cancer therapy. Specifically, albumin-based nanoparticles are a developing platform for the administration of diverse chemotherapy drugs owing to their biocompatibility and non-toxicity. Visnagin, a naturally derived furanochromone, treats cancers, epilepsy, angina, coughs, and inflammatory illnesses. In the current study, the synthesis and characterization of albumin visnagin (AV) nanoparticles (NPs) using a variety of techniques such as transmission electron microscopy, UV-visible, Fourier transform infrared, energy dispersive X-ray composition analysis, field emission scanning electron microscopy, photoluminescence, X-Ray diffraction, and dynamic light scattering analyses have been carried out. The MTT test, dual AO/EB, DCFH-DA, Annexin-V-FITC/PI, Propidium iodide staining techniques as well as analysis of apoptotic proteins, antioxidant enzymes, and PI3K/Akt/mTOR signaling analysis was performed to examine the NPs' efficacy to suppress MDA-MB-468 cell lines. The NPs decreased cell viability increased the amount of ROS in the cells, disrupted membrane integrity, decreased the level of antioxidant enzymes, induced cell cycle arrest, and activated the PI3K/Akt/mTOR signaling cascade, ultimately leading to cell death. Thus, AV NPs possesses huge potential to be employed as a strong anticancer therapy alternative.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Apoptose , Antioxidantes/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR
9.
Can J Gastroenterol Hepatol ; 2021: 5539789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900851

RESUMO

Objective: Due to the rarity of recurrent gallstone ileus (RGSI), its epidemiological and clinical features are elusive. With a focus on mortality and the site of impaction, this study consolidates the key clinical characteristics of index GSI (IGSI) and RGSI. Methods: A meta-analysis of cases reported on RGSI was performed. Risk factors for mortality and site of impaction were examined, and a subgroup analysis was performed for age, sex, and site of impaction (jejunum, ileum, or others). Results: In the final analysis, 50 (56 individual cases) studies were included. The paired data for the site of impaction was available for 45 patients. Women accounted for 87.3% of all RGSI cases included in the pooled analysis. The median age (interquartile range, IQR) of the patients was 70 (63-76) years, and the median time of recurrence (IQR) was 20.5 (8.5-95.5) days. The overall mortality rate was 11.8%, without correlation between the mortality rate and age, the time of recurrence, or the site of impaction. The region in which the stone was found in RGSI and IGSI was similar in most cases (p=0.002). Logistic regression also revealed a higher probability of stone impaction in the ileum in RGSI if it was the site of impaction in IGSI. In most cases, enterolithotomy was the preferred method. Conclusions: A high index of suspicion for RGSI should be maintained for older women with a history of GSI. The region where the stone was impacted during IGSI should be investigated first in such patients.


Assuntos
Cálculos Biliares , Íleus , Obstrução Intestinal , Indexação e Redação de Resumos , Idoso , Feminino , Cálculos Biliares/complicações , Cálculos Biliares/epidemiologia , Humanos , Íleo , Íleus/epidemiologia , Íleus/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...